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Solution of Waveguide Discontinuities

by Modal Analysis

ALVIN WEXLER, MEMBER, IEEE

A bstract— A general method is presented for amalysis of wavegoide

jonctions and diaphragms hy smnrning normal modes of propagation. giving

solutions for the resulting scattered modes. Beeause interaction effeets of

dominant and higher-order modes between discontkndtiea are allowed,

tirdte-length obstructions can be stodied.

Solutions are found without auy prior assumption about the total fields

existing at the discontirndties and, as a reaott, the formrdation is applicable

to a wide range of problems. The tecbrriqne proves to be simple and is ideally

suited to computers, involving mainly the solution of sets of sirmdtaneous

liiear equations.

Thick and thin symmetrical bifurcations of a rectangrdar guide are

studied. Forward-scattered mode amplitudes and iopnt admittances are cal-

culated, the computed admittance of the thin bifurcation is compared with

well-knowu results, and transverse field patterns on both sides of the junc-

tion are plotted, thus showing the accuracy of the matclh.

The results of a tirrite-length bifurcation by a thick vane are presented for

a range of lengths, the parameters of the equivalent T network being given

in each case. For very short lengths, the problem corresponds to an inductive

strip across the guide.

I. INTRODUCTION

v ERY FEW waveguide discontirmities have been

solved exactly, and these have been accomplished by

integral transform techniques [11. Other integral

equation formulations, solved by quasi-static approxima-

tions, were reviewed by Lewin [2]. Although there is hope

that some restrictions may eventually be alleviated if new

ways of dealing with integral equations are found, the out-

look is not particularly bright. Collin [3] presents examples

illustrating the use of variational techniques. But the

method as outlined requires much mathematical innova-

tion when applied directly to particular problems. Other ap-

proaches employing static approximations and perturba-

tional methods are very approximate and are usually un-

acceptable for the broad class of problems encountered in

practice.

In the modal analysis method, the amplitudes of normal
modes are chosen so as to satisfy boundary conditions at the

discontinuity. Because the modal approach is direct and

conforms closely to physical reality, it should have the

widest application. The method gives excellent estimates to

the aperture fields and scattered modes, and should be of

particular value to multimode propagation studies, e.g.,

multimode techniques applied to aerial improvement [4].

Objections of slow convergence and involved numerical

work are not particularly significant to digital computers,

and so demand is increasing for a general and convenient
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formulation rather than for economy in computing effort.

It is, therefore, the purpose of this paper to present a gen-

eral method of normal mode summation, to renew interest

in the technique that has never been fully exploited, and to

argue the case for a complete change of emphasis in the

solution of waveguide discontinuity problems.

II. DESCRIPTION OF THE PROBLEM.

Consider two uniform cylindrical waveguides having dif-

ferent cross sections and distributions of enclosed electrical

properties. The junction formed by joining them end-to-end,

with axial lines parallel, can be described as a function of

two transverse coordinates UI and Uz. Boundary conditions,

continuity of transverse fields through all apertures and

zero tangential electric field at conducting obstacles, are

satisfied by a suitable infinite series of modes appropriate to

each side of the junction. If the modes of propagation in

both guides and the scattering coefficients of succeeding

discontinuities are known, the properties of the junction

may be computed. The problem is to find how power is

apportioned between the various scattered modes.

The transverse fields of each mode maybe written as

~i(ul, uz, z) = ai~i(ul, Uz)” e*y’z (1)

and

Jii(ul, Uz, z) = aifii(ul, U2)” ei “z. (2)

The sign of the exponent is fixed by the propagating direc-

tion. @i, fii, and yi are the transverse vector functions and

propagation constant of the ith mode. If not known ex-

plicitly, they can often be derived numerically [5]. Factors

ai are the mode coefficients which, along with the reflection

factor p of the incident mode, are to be determined. Modes

are numbered in an arbitrary sequence, the variables i, j,

k, m, n, and r being reserved for this purpose. In general, the

fields must be described in a piecewise fashion, e.g., Fig. 1.

A waveguide cross section consists of a conducting bound-

ary enclosing any distribution of magnetic, dielectric, and

perfectly conducting regions. For our purposes, a wave-

guide boundary is defined as the perfectly conducting pe-

riphery containing all permeable regions only. Thus, for

example, the cross-section boundary of a coaxial line is the

inner wall of the outer conductor and the outer wall of the

inner one.

Three classes of discontinuity, consisting of the following

situations, must be considered: 1) the projection of the

guide boundary nearer the klystron completely encom-

passes the guide boundary following the junction (Section
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Fig. 1. A possible TE transverse-field configuration in a

magnetic slab-loaded waveguide.

III); 2) the guide nearer the klystron is contained within the

projection of the guide boundary following the junction

(Section IV); and, the remaining possibility, 3) neither

guide boundary can be contained within the other (Section

V). Classes 1) and 2) include coincident boundaries as a

special case.

111. BOUNDARY REDUCTION

Fig. 2 represents part of a general waveguide system

consisting of three dissimilar guides a, b, and c. The junctions

are numbered 1 and 2. Consider a mode i = 1 emanating

from a matched source in a and impinging on waveguide b

at z= O. The coefficient of this mode is al, those for the

back-scattered modes are az, as, “.., ai, “.”, and in an an-

isotropic guide pal as well. Taking f–to be the total trans-

verse electric-field vector function within the aperture at the

discontinuity, the field expanded in terms of modes just to

the left of junction 1 is

C?-= (1 + P)ali!.l + ~ a;~.i. (3)
i=z

Subscript a denotes quantities relative to the first wave-

guide. Similarly, the total magnetic field may be expressed by

% = (1 – p)al)ial – ~ aifiai. (4)
i=z

In many cases, such as modes in the slab-loaded waveguide

of Fig. 1 and hybrid modes in rod-loaded circular guides,

unique wave admittances cannot be defined. Thus, for com-

plete generality, the transverse electric and magnetic fields

are expressed independently.

Refer again to Fig. 2. The aperture fields at z = O will now

be expressed in terms of modes in b. If waveguide b is

matched, the transverse electric-field pattern of mode j is

given by bj2~j. However, each transmitted evanescent or

propagating modej reaching junction 2 partially reflects and

scatters power into other modes k, some of which return to

junction 1. Therefore, it is necessary to account for these re-

turned waves, as well as for the positively directed ones,

when summing modes.

Scattering coefficients are used to relate the amplitudes

and phases of modes transmitted past junction 1 to those
reflected from junction 2. Consider waveguide b to be ex-

cited from junction 1 by a single forward wave j whose co-

1
1 I

“r——l___

Fig. 2. Three waveguides with higher-order mode
coupling between junctions.

efficient is unity, i.e., b~= 1 at junction 1. Then, scattering

coefficients sj~ are defined as equal to mode coefficients b~,

of the back-scattered waves k, transformed in amplitude and

phase to junction 1 from 2. This is repeated for allj. Clearly,

junction 2 must be solved before junction 1.

Multiplying bj by sj~ gives the contribution of j to k as

seen at junction 1. Because each forward-propagating mode

j has an infinity of back-scattered modes k of the form

sj~bj~~~ associated with it, the total transverse electric and

magnetic fields just to the right of junction 1 result by sum-

ming over all j and k. This gives

and

(5)

(6)

Boundary conditions to be satisfied at the discontinuity

are as follows: transverse electric and magnetic fields must
be continuous across the aperture, and electric field tangen-

tial to the conducting obstacle must vanish. The single

boundary condition is sufficient at a conducting surface.

Let m be any mode number in waveguide a. In all uniform

guides with reflection symmetry and perfectly conducting

walls, the following orthogonality relation [6] holds for

nondegenerate modes:

(7)

when i #in. The surface integral extends over the entire

cross section of the waveguide a. Degenerate modes should

be orthogonalized by the Gram–Schmidt procedure [7].

Take the cross product of(3) with li.~ and integrate over

the cross section of waveguide a. Assuming orthogonality

of modes and substituting (5) for the (as yet) unknown

aperture field i?, thus employing the continuity condition for

transverse electric fields, we get
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when m = 1, and .””, bN/al and p), and so the system of equations may be

[

solved. For complicated problems (e.g., junctions between

~ ~,jxfi.~ii dsam Z.m x t?.~ “iizds= ~ bj
(

rectangular and circular guides or between guides slab-
Z loaded differently, etc.), the integrations in (12) and (13)da j=~ ~b

J

should be performed numerically [8].

+ ~ Sj~

)

i2bk X ham “ ii= ds (9) By rewriting (9), the coefficients of the back-scattered
kc 1 b modes in guide a may be found. Therefore,

J“

(14)

when m # 1. Because i! exists over the aperture only and

vanishes elsewhere, the integrals on the right-hand sides of

(8) and (9) are taken over b. This completes the electric-

field boundary conditions.

Now, take the cross product of (4) with Zb. and integrate

over the cross section of waveguide b. Substituting (6) for

the unknown aperture field %, and using the orthogonality

relation

(lo)

for nondegenerate modes when n # j, we find that

Continuity of transverse magnetic field was used in the

derivation of (1 1).

Changing the index m to i in (9), substituting it into (11)

so as to eliminate ai, and rearranging, we get

where i # 1. Terms previously formed by the Gram–Schmidt

orthogonalization procedure should now be decomposed

into normal waveguide modes, thus completing the study

of the junction.

By using (11) in place of (12), it is possible to solve for p,

bj/al, and ai/al all at the same time. This procedure has

two disadvantages: 1) the computer store requirement

approximately quadruples (assuming that M and N are

about the same size); and 2) as the amount of computing is

proportional to the cube of the number of unknowns, the

work increases by eight times. It is certainly preferable to

use (12) and then to find the ai/al through (14).

IV. BOUNDARY ENLARGEMENT

This is the complement of the problem discussed in

Section III. Many of the comments made previously are

applicable here as well.

Call the first, and smaller, guide a and the larger one b.

Equations (3) through (6) describe the fields at the junction

as before.

The derivation of the simultaneous equations is almost

identical to that of Section HI. Briefly, cross-multiply (6) by

Zamand integrate over the cross section of a. Express the

P

(12)

and from (8),

J ‘bjl
P .E~l X iial “ii= ds – ~~1 < [JibjX hal ii= ds + ~ Sjk

J H

—

zbkxfi~l”iizds = — Zol X hol ii= ds. (13)
a b k=l b a

For practical reasons, the infinite series were truncated at aperture field by (4). Note that, as in (8) and (9), two cases

M and N which signify the number of modes in waveguides occur: m = 1 and m #1. Also, cross-multiply (5) by Iibn and

a and b, respectively. Equation (12) generates N linear integrate over the cross section of b, substituting (3) for 3.

equations where n= 1, 2, “ “ ‘ , N and (13) supplies one equa- Assume orthogonality, and after some algebraic manipula-
tion. There are N + 1 unknowns (b I/al, b2/al, . . . . bJal, tion, the following equations result:
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and

N bj N

- E -(J
Fai x hbj . iiz ds — ~ Sjk

J ),

Zai X hbk . ii= ds
u~ j=lU~ * k=l a

—

al

( .Z.i X hai “ ii= ds
J.

where i # 1. The system of N+ 1 linear equations, defined

by (15) and (16), may be solved for bl/al, bz/al, “ “ “ , b~/al

and p. The back-scattered modes ai/al can then be found

from (17).

V. SYSTEMS OF CONNECTED WAVEGUIDES

Fig. 2 depicts part of a system in which interaction of

dominant and higher-order modes between discontinuities

occurs. As we have seen, if power flows from the left, it is

necessary to know the scattering properties of junction 2

before solving the problem at junction 1. Similarly, before

analyzing junction 2, the scattering properties of any dis-

continuity farther down the guide must be known. Ulti-

mately, analysis must begin at a simple termination, such as

a matched or single-mode guide or a short circuit which

causes independent reflection of each mode incident upon

it, regardless of the amplitude and phase of any other.

If the length 1 of a particular waveguide is small, many

modes generated at one junction, figure in the field sum-

mation at the other. In other words, higher-order mode

coupling occurs. Choose a finite number of modes in the

waveguide consisting of the lowest-order modes likely to be

set up at either junction.

As indicated earlier, the variable i= 1 is not reserved for

any particular mode but is allowed to represent any mode
presumed incident on a junction. If r is the mode incident

on say junction 1, then p, is its reflection factor and ai/a,,

with i #r, denotes the M – 1 coefficients of other back-

scattered modes. These are all found as previously described.

Therefore, M scattering coefficients of junction 1, as defined

at the next junction towards the klystron, are given by

ai
Sri = ; e-(”+ ‘“)’ i+r,

r
(18)

= p.e - 2Y’1 i=r

thus including amplitude and phase change of both incident

and scattered modes between junctions. Consider each

(17)

mode r=l,2, .”. , M, in turn, to be independently incident

on the junction, and solve the resulting system of equations

each time. In this way, all M2 scattering coefficients are

found.

Junctions can be represented by T, n, and transformer

networks [9], [10 ]. To evaluate the equivalent circuit, three

determinations of the input admittance y’ as a function of a

load in guide c are generally required.

A. Diaphragms and Offset Waveguides

Refer to Fig. 2. Clearly, as the length of waveguide b de-

creases, the coupling between modes generated at both

junctions becomes more pronounced and we have an iris

between two offset guides or, as a special case, simply two

offset guides. In the study of diaphragms, it is necessary to

match fields through the windows. However, it is incorrect

to equate both sets of waveguide modes across the plane of

the diaphragm, as this will not ensure zero transverse electric

field at the conducting surfaces. By treating the diaphragm

as a special case of a three-waveguide system, this problem

does not arise. Furthermore, this method does not require

any prior assumption as to the total field within the window.

It is only necessary to know the form of the normal modes

in the waveguide defined by the aperture shape.

B. Multiple-Guide Junctions

Fig, 3 typifies a class of multiple-guide junctions that this

method can accommodate. A particular problem is the

analysis of selective launching of modes into a large guide

b by controlling the amplitude and phase of modes in a and

a’. This problem is a significant one in the design of multi-

mode aerials [4].

Briefly, the method is as follows. Think of the system to the

left of the junction in Fig. 3 as one composite waveguide
rather than as a number of guides. The modes in this com-

posite system are defined in a special way. We define a set

to conform to the interior of one of the constituent guides,
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Fig. 3. A multiple-guide junction. Fig. 4. A thick, symmetrical, inductive u%.

say a; elsewhere in the cross section these modes have zero

field. Similarly, another set is defined to suit the other guide

a’, this time with no field over the first aperture and inter-

vening region. These modes are denoted i= 1, 2, “””, M,

where M is the total number of modes assumed in both a

and a’. It is this double set that forms the normal and com-

plete mode system in the composite waveguide. Once modes

are defined in this way, it is of no consequence to the match-

ing procedure that they belong to electrically isolated guides.

Now, consider excitation only from a by mode ir. This

mode will partially reflect into a, and other back-scattered

modes will be generated, some traveling into a and others

into a’. Mode coefficients are found by solving the set of

simultaneous equations. The problem must then be re-

peated with excitation from a’ and the resulting fields found

by superposition.

The reverse situation, with a mode in the large guide”

impinging on the smaller guides, is handled similarly. The

bifurcation, discussed in Section VI, is one problem of this

type and the approach is described there.

C. Symmetry Considerations

Considerable simplification occurs when discontinuities

exhibit certain symmetries and are either symmetrically or

antisymmetrically excited. For example, the iris in Fig. 4 is

symmetrical about a transverse plane. If both ports are

excited symmetrically, an open circuit appears at the central

plane; antisymmetrical excitation produces a short circuit.

Under these conditions, only pure reflection occurs at the

central plane, and so sj~ = Owhen ,j # k. sjj is given simply by

1 – yjj.
Sjj . —

1 + y~j

(19)

y~j is the normalized input admittance of the jth mode in b

at the discontinuity, distance 1/2 from the symmetry plane.

Two parameters are sufficient to specify the equivalent

network of such discontinuities. For example, the upper-

arm impedances of the equivalent T network are both given
by ZI ~– ZI ~ and the common branch by ZI ~. The com-

puted input impedance, with symmetrical excitation, yields

ZI ~+ ZI ~, and that with antisymmetrical excitation gives
Z1l– Z12.

VI. NUMERICAL EXAMPLES

The bifurcation of a rectangular waveguide by a thin vane

is one of the few junction problems that have been solved

rigorously. As a check on the theory just developed, it will

be solved by the modal analysis method. Thick, semi-

infinite and finite-length bifurcations will also be investi-

gated. These examples serve to indicate the general ap-

proach and illustrate some practical difficulties.

A. H-Plane B@rcation

Fig. 5 shows a rectangular waveguide loaded with a

thick, perfectly conducting vane. y-coordinate dimensions

are normalized with respect to the broad dimension w.

Assuming excitation by an HOI mode, only symmetrical

modes are generated at the discontinuity. Transverse field

patterns of the two lowest-order modes in the bifurcated

guide b are shown and are seen to be HOI and H03 modes

deformed by the vane. Modes in a are the usual ones in an

empty rectangular guide. Note that this is a boundary-

reduction problem.

Expressions for the transverse fields in guide a are

.Zai= 22Xsin (p7cy/w). (20)

and

fi.i = ~yy.i sin (~ny/w). (21)

The wave admittance of the ith mode is

yai=&dW. (22)

Modes are numbered consecutively, i.e., i= 1,2, ” ~”, M, and

so

p=2i–1, (23)

thus giving only symmetrical modes when substituted into

(20) and (21).

In the left-hand region of waveguide b the transverse

fields are

‘2q7ry/w

-“( )‘bj = ‘x ‘ln 1 – t/w

and

()2qlty/w
h~j = ~Yybj sin ~ .

Equations (24) and (25) hold in the range

0< y/w < 0.5(1 – L/w)

(24)

(25)

and are zero across the vane. Substitute (1 – y/w) for y/w

when 0.5(1 + t/w)< yiw <1. The admittance of the jth mode

is

ybj=g~l-(sy. (26,
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Fig. 5. Transverse fields of the two lowest-order TE modes in a

centrally bifurcated rectangular guide.

Here, we have

q=j, (27)

where j =1, 2, . . . . N. When calculating yai and y~j, take the

positive root when real and the negative imaginary root

when imaginary.

If the vane were not central, one set of modes would have

to be defined to conform to the interior of one of the par-

titioned guides with zero field elsewhere. Similarly, another

set would have to be defined for the other section. This is

similar to the multiple-guide input discussed in Section V.

For the symmetrical problem, however, each mode has to

be defined over both apertures. Otherwise, two columns of

the matrix representing (12) and (13) will be identical, and

the system will then be singular.

Referring to (12) and (13), it is seen that the following

three integrals are required:

J
Z.i X hni “ tiZ ds = O.jwyai

a

J.ijjX hbj . ii, ds = 0.5wy~j(1 – t/W),
b

and

J
~hj X h~i “ tiZ ds = O.jwyai(l – ~/W)

b

~[sin (~)/j - sin (g)/g],

where

f= [o.5p(l – @’) – q]n

and

9 = [o.5p(l – t/w) + q]n.

(28)

(29)

(30)

(31)

(32)

The factor w is common to all terms in (12) and (1 3), and so

it may be deleted. As all fields are uniform along x, the

integrations above were performed only with respect to y.

Having evaluated these integrals, all the analysis required is

completed. This is a particularly simple problem, the Sjk

terms vanishing due to the infinite length of the bifurcated

guide.

Cases t/w = O and 0.2 were studied with the frequency

parameter w/20 =0.7. Integrals (28) to (30) were computed

and substituted into (12) and (13) as required. The same

number of modes were employed in each guide, i.e., M = N.

The resulting set of simultaneous linear equations was

solved by standard Gaussian reduction and back-substitu-

tion techniques [11 ].

Forward- and back-scattered mode coefficients were

computed and, from the reflection factor, the normalized

input admittance

l–p
Y’=l+p (33)

was found. y’ is tabulated in Table I as a function of different

expansion sizes for the thick and thin bifurcation. Results of

an exact analysis of the thin-vane case, which uses a trans-

form method, are plotted by Marcuvitz [12]. He gives the

resulting shift in the null point, and from it the normalized

admittance was calculated to be y’= –j2.416. On this basis

it is seen that the forty-mode expansion is less than 0.05

percent in error. Even with only ten modes the error is less

than 1 percent. Also, corresponding computations for a

vane with normalized thickness tJw = 0.2 are given. An

exact solution is not known for this case, and so a com-

parison is not available. However, the rate of convergence

is seen to be equally rapid.

In Table II the first five forward-scattered mode co-

efficients, normalized with respect to that of the incident

mode i = 1, are presented for t/w= O. It is clear that the

apportionment of power between scattered modes can be

closely calculated. For example, there is little difference in

the computed bj/al values between the twenty- and forty-

mode cases. Coefficients bj/al for lower-order modes are

known to a higher accuracy than the remaining terms. This
inaccuracy in the last few terms, due to an attempt to com-

pensate for the missing modes, may be seen in the N= 5

case where j= 5 is the last mode of the finite series.

As a reasonable approximation, take N= 40 to furnish

almost exact results in comparison to N = 10. On this basis,

bJal, b2Ja1, and b3Ja1 (for N= 10) are known to within

errors of 0.5, 2, and 4 percent, respectively. It is difficult to

assess just how accurate the N =40 values are, but they are
probably of a very high order. Phase angles converge very
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rapidly. For this particular problem, all modes in a given

solution have the same phase at the discontinuity, except

for 180’ phase reversals. Similar comments apply to the

back-scattered coefficients ai/al.

The junction fields are expressed by (3) through (6).

Substituting (20), (21), (24), and (25) into them, and dividing

by al, we obtain the following equations. In waveguide a

M (Ii
HY = (1 – p)y.l sin (7cy/w) + ,~z ~ y., sin (prey/w), (35)

and in waveguide b within O< y[w < 0.5(1 – t/w)

()2q7Cy/w
Ex= ~ ~sin —

j=l al 1 – t/w

N b.

()

2qrcy/w’
HY = ,~1 < y~j sin —

l–t/w”

(36)

(37)
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Directly in front of the vane, a magnetic field exists sup-

ported by surface currents.

In the preceding study, the number of modes employed

in guides a and b were equal, i.e., M = N. For several vane

thicknesses (t/w = O, 0.2, and 0.8), computations were made

of input admittance y’ versus N for a range of M/N values.

It was found that if M/N was greater than unity, higher

accuracy could be achieved. However, if M/N was too large,

instabilities occurred and wrong answers resulted. It is felt

that there may be a way of choosing an optimum ratio for

a given discontinuity, but the matter has not yet been in-

vestigated. In a general way, it seems that the greater the

discontinuity, the larger the optimum M/N ratio required.

B. Finite-Length Bljiurcation

Having considered the semi-infinite bifurcation, the finite

bifurcation of length 1 will now be studied. This is a sym-

metric problem, and so it will be treated as described in

Section V.

The propagation constant of the jth mode in guide b is

given by

When 0.5(1 + t/w)< y/w< 1, substitute (1 – y/w) for y/w in

(36) and (37). These fields are plotted (by computer) in

Figs. 6 to 9 for half the guide width only, the fields being

symmetrical about y/w =0.5. Solid curves represent the

field summation in guide a immediately preceding the

junction, and the broken curves represent the fields just in-

side guide b.

First of all, consider the electric fields. The quality of the

match is seen to improve as more modes are used. Notice

that the electric field in b is zero at the vane. This is because

each constituent mode of the Fourier series has zero electric

field there. However, the summation of modes in guide a

does not vanish there, although it is attempting to do so.

In particular, over the thick vane, EX in guide a oscillates

about zero. The greater the number of modes used, the

greater the frequency of oscillation, and the smaller their

amplitudes, converging to zero in the limit.

The aperture electric fields are roughly what one might

have expected. The resulting pattern is a compromise be-

tween the incident HO ~ mode and the requirement that the

electric field shotild disappear at the vane; the maximum

electric field does not occur at the center of the bifurcated
region but slightly more to the center of the guide. As the

wave proceeds down the guide, the higher-order modes

attenuate very rapidly, and the pattern becomes substan-

tially that of an undistorted half-sine wave in each region.

,The magnetic field has to cope with a singularity at the

edge of the vane. For this reason, HY does not attain as good

a match as does EX for the same number of modes. Besides

going to infinity as the corner is approached, an added

difficulty is that HY in guide b must vanish at the vane for

the same reasons as Ex. This is attempted by rising to a

high value near the vane, and then suddenly dropping

sharply to zero.

In the limit, with increasingly large expansions, the oscil-

lations disappear and H, increases almost linearly with y/w,

except in the vicinity of the edge where it goes to infinity.

‘j= : k%)’-(23’” (38)

The normalized input admittance of the .jth mode, distance

1/2 from an open circuit at the central plane,

yjj = tanh (yjl/2)

and with a short circuit at the central plane,

yij = coth (~jZ/2).

is

(39)

(40)

Sjj is then computed from (19). It could equally have been

found by rewriting (18) to give

sjj = +e–~J— , (41)

where the plus and minus signs correspond to symmetrical

and antisymmetrical excitation, respectively.
Assuming an open circuit at the central plane, p was com-

puted from (12) and (13) (using the relevant values of ,sjj),

and from it the normalized input impedance ZI ~+ ZI’ was

found. With a short circuit at the central plane, the input

impedance ZI ~– 21 ~ was found. ZI ~ was then easily cal-
culated.

Table III presents the resulting equivalent T network

values for different normalized lengths l/w. For long vanes,

l/w >10, ZI ~– Z12 is the inverse of y’ computed for the

semi-infinite case. As the length decreases, ZI ~—ZI ~ be-

comes smaller and ZI ~ increases. At about lfw = 0.1, they

are approximately equal. With further reduction in length,

the bifurcation appears to be a zero-thickness inductive
strip. Certain numerical difficulties arise when l/w is made

exactly equal to zero. This is heralded by increasing dis-

agreement between the 21 ~ values, computed for the N = 25

and N =50 cases, as the length decreases. Finally, the results.

make no sense at all. Possibly, the simultaneous equations

tend to become ill-conditioned in the limit. This point

should be investigated more carefully.



TABLE I

i

1

~

3

4

5

I.C

0.2

0.6

(a)

0.4

0,2

(

I.c

0.8

0.6

(a)

0.4

0.2

(

SEMI-INFINITEBIFURCATIONS)V/10= 0,7. NORMALIZED
INPUTADMITTANCEy‘

N t/w = o tjw=o.2

5 –j2.363 –j7.213

10 –j2.396 –j7.335

20 –j2.410 –j7.378
40 –j2.415 –j7.394

TABLE II

SEMI-INFINITEBIFURCATIONf/}v= O, W/AO= 0.7. FIRSTFIVEFORWARD-SCATTEREDMODECOEFFICIENTSb,/al

N= 5 N= 10 N=20 N=40

0.7956/67 06” 0,7857/67.35”’ 0.7824/67,46’ 0.7813/67.50”

–0.1802/67.06’ –0.1717/67.35° –0,1693/67.46’ –0.1685/67.50”

0.0975/67.06° 0.0872/67.35’ 0.0847/67.46° 0.0840/67.50’

–0.0715/67.06° –0.0562/67.35’> –0.0535/67.46” –0.0528/67.50°

0.0789/67.06’ 0.0409/67.35” 0.0379/67.46’ 0.0372/67.50°

f
1 1 1 t I

01 0,2 03 04 05
ylw

2,0XIC

I

(b) I

c

0.5

t

I

--l
Y/w

Fig. 6. H-plane bifurcation transverse fields: t/w= O, N= 20. (a) Phase of E.= 6746’ (b) Phase of Hy = – 22.54.

2Oxlo-+

-5

(b)

ylw ylw

Fig. 7. H-plane bifurcation transverse fields: r/w= O. N= 40. (a) Phase of E, = 67.50”. (b) Phase of If, = – 2’2.50’.
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Ex
0.5r

(b)(a)

Y/w

HY
I,OXIIP

r

0.81
0,6 –

04 -

0.2 -

y/w

Fig. 8. H-plane bifurcation transv&se fields: t/w= 0.2, N- = 20. (a) Phase of Ex = 82.28°. (b) Phase of H, = – 7.72°.

(a) (b)

1 1 I
01 02 0.3 0.4W 0.5

ylw
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Fig. 9. H-plane bifurcation transverse fields: t/w,= 0.2, N= 40. (a) Phase of Ex = 82.30. (b) JJV= – 7.70”,

TABLE III

FINITE-LENGTHBIFURCATIONt/w =0.2, W/IO =0.7. SYMMETRICALT
EQUIVALENTNETWORKPARAMETERS

1/!4 N=25 N= 50

Z12

10 j.0000
1 j.0002

1o-1 j.0769
lo-z j.1589
1o-, j.1801
IO-4 j.1907
lo-s j.1986

Z1l– Z12 Z12 Z1l– Z12

j.1354 j.0000 j.1352

j.1352 j.0002 J.1350

j.0651 j.0767 j.0650

j.0089 j.1578 j.0089

j.0009 j.1766 j.0009

j.0001 j.1824 j.0001
j.0000 j.1859 j.0000
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VII. CONCLUSIONS

A method was derived for solving a wide class of wave-

guide discontinuities by modal analysis. Thick and thin

symmetrical H-plane bifurcations were studied. Input ad-

mittance and scattered modes were computed for a number

of expansion sizes. Accuracy improved with the number of

modes used.

Transverse electric-field patterns, plotted on both sides

of the junction, indicated a good match for twenty and

forty modes. Magnetic field matches less well due to the

singularity at the vane. Even so, with forty modes the actual

pattern may be easily discerned. Because permeable media

do not exhibit singularities, it is believed that convergence

will be much more rapid for discontinuities formed by them.

More information is required on the effects of different

numbers of modes on alternate sides of a junction and on

the solution’s behavior as the axial length of a discontinuity

vanishes.
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Ferroelectric Limiter

AND MERLE R. DONALDSON, SENIOR MEMBER, IEEE

A bstract— The design and analysis of a l-GHz limiter which uses voltage

variation of the dielectric constant of a ferroelectric material to achieve

limiting is described. An RF electric field derived from the input power is

used to change the relative dielectric constant 6, of the material; the resulting

nonlinear change of capacitance of a small element of the material is used to

change the condition of a tuned circuit. The taned circuit terminates a quarter-

wavelength stub which shunts the main transmission line, thereby providing a

power-dependent mismatch at the junction of the two transmission lines. The

degree of this mismatch is controlled by the condition of the tuned circuit and,

therefore, the magnitude of the input power.
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Theoretical analysis and experimental results for small signal and large

signal operation are presented. Iimiter analysis is based on the measured

change of ferroelectric (nordbrear) capacitance as a function of dc electric

field. The ferroelectric element is 0.011 by 0.013 by 0.020 (inches) machined

from polycrystalline (PbO ~~+ro ,68J Ti03 material.

F

ERROELECTRIC materials have inherent properties

which cause the dielectric constant of the material to

change as a function of ambient temperature and

electric field. The change of dielectric constant with electric

field is particularly interesting to circuit designers, since it

represents a mechanism by which circuit response can be

changed electrically. Applications to be considered at

microwave frequencies are switches, harmonic generators,

limiters, parametric amplifiers, phase shifters, etc. To date,
a UHF limiter [1], an X-band harmonic generator [2],

a UHF phase shifter [3], and an L-band switch [4], [5]

have been reported, and parametric amplifiers have been

investigated quite thoroughly [6]. The L-band passive

limiter described here is a result of further effort to apply


