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Solution of Waveguide Discontinuities
by Modal Analysis

ALVIN WEXLER, MEMBER, IEEE

Abstract— A general method is presented for analysis of waveguide
junctions and diaphragms by summing normal modes of propagation, giving
solutions for the resulting scattered modes. Because interaction effects of
dominant and higher-order modes between discontinuities are allowed,
finite-length obstructions can be studied.

Solutions are found without any prior assumption about the total fields
existing at the discontinuities and, as a result, the formulation is applicable
to a wide range of problems. The technique proves to be simple and is ideally
suited to computers, involving mainly the solution of sets of simultaneous
linear equations.

Thick and thin symmetrical bifurcations of a rectangular guide are
studied. Forward-scattered mode amplitudes and input admittances are cal-
culated, the computed admittance of the thin bifurcation is compared with
well-known results, and transverse field patterns on both sides of the junc-
tion are plotted, thus showing the accuracy of the match.

The results of a finite-length bifurcation by a thick vane are presented for
a range of lengths, the parameters of the equivalent T network being given
in each case. For very short lengths, the problem corresponds to an inductive
strip across the guide.

1. INTRODUCTION

KS Y ERY FEW waveguide discontinuities have been
solved exactly, and these have been accomplished by
integral transform techniques [1]. Other integral

equation formulations, solved by quasi-static approxima-
tions, were reviewed by Lewin [2]. Although there is hope
that some restrictions may eventually be alleviated if new
ways of dealing with integral equations are found, the out-
look is not particularly bright. Collin [3] presents examples
illustrating the use of variational techniques. But the
method as outlined requires much mathematical innova-
tion when applied directly to particular problems. Other ap-
proaches employing static approximations and perturba-
tional methods are very approximate and are usually un-
acceptable for the broad class of problems encountered in
practice.

In the modal analysis method, the amplitudes of normal
modes are chosen so as to satisfy boundary conditions at the
discontinuity. Because the modal approach is direct and
conforms closely to physical reality, it should have the
widest application. The method gives excellent estimates to
the aperture fields and scattered modes, and should be of
particular value to muitimode propagation studies, e.g.,
multimode techniques applied to aerial improvement [4].
Objections of slow convergence and involved numerical
work are not particularly significant to digital computers,
and so demand is increasing for a general and convenient
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formulation rather than for economy in computing effort.
It is, therefore, the purpose of this paper to present a gen-
eral method of normal mode summation, to renew interest
in the technique that has never been fully exploited, and to
argue the case for a complete change of emphasis in the
solution of waveguide discontinuity problems.

I1. DESCRIPTION OF THE PROBLEM
Consider two uniform cylindrical waveguides having dif-
ferent cross sections and distributions of enclosed electrical
properties. The junction formed by joining them end-to-end,
with axial lines parallel, can be described as a function of
two transverse coordinates «; and u,. Boundary conditions,
continuity of transverse fields through all apertures and
zero tangential electric field at conducting obstacles, are
satisfied by a suitable infinite series of modes appropriate to
each side of the junction. If the modes of propagation in
both guides and the scattering coefficients of succeeding
discontinuities are known, the properties of the junction
may be computed. The problem is to find how power is
apportioned between the various scattered modes.
The transverse fields of each mode may be written as
8uy, Uy, 2) = a;8{u,, uy)-e*1*

1
and

b, g, 2) = ahfuy, uy)- e 2
The sign of the exponent is fixed by the propagating direc-
tion. &, h;, and y, are the transverse vector functions and
propagation constant of the ith mode. If not known ex-
plicitly, they can often be derived numerically [S]. Factors
a; are the mode coefficients which, along with the reflection
factor p of the incident mode, are to be determined. Modes
are numbered in an arbitrary sequence, the variables i, j,
k, m, n, and r being reserved for this purpose. In general, the
fields must be described in a piecewise fashion, e.g., Fig. 1.

A waveguide cross section consists of a conducting bound-
ary enclosing any distribution of magnetic, dielectric, and
perfectly conducting regions. For our purposes, a wave-
guide boundary is defined as the perfectly conducting pe-
riphery containing all permeable regions only. Thus, for
example, the cross-section boundary of a coaxial line is the
inner wall of the outer conductor and the outer wall of the
inner one.

Three classes of discontinuity, consisting of the following
situations, must be considered: 1) the projection of the
guide boundary nearer the klystron completely encom-
passes the guide boundary following the junction (Section
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A possible TE transverse-field configuration in a
magnetic slab-loaded waveguide.

Fig. 1.

III); 2) the guide nearer the klystron is contained within the
projection of the guide boundary following the junction
(Section 1V); and, the remaining possibility, 3) neither
guide boundary can be contained within the other (Section
V). Classes 1) and 2) include coincident boundaries as a
special case.

III. BOUNDARY REDUCTION

Fig. 2 represents part of a general waveguide system
consisting of three dissimilar guides a, b, and c. The junctions
are numbered 1 and 2. Consider a mode i=1 emanating
from a matched source in a and impinging on waveguide b
at z=0. The coeflicient of this mode is a;, those for the
back-scattered modes are a,, a3, " ", qa;, -, and in an an-
isotropic guide pa, as well. Taking & to be the total trans-
verse electric-field vector function within the aperture at the
discontinuity, the field expanded in terms of modes just to
the left of junction 1 is

_ o
& =1+ p)a;e, + ), 4, @)
i=2
Subscript a denotes quantities relative to the first wave-
guide. Similarly, the total magnetic field may be expressed by
H = (1 — plah, — 'Zz ahy;. )
i=
In many cases, such as modes in the slab-loaded waveguide
of Fig. 1 and hybrid modes in rod-loaded circular guides,
unique wave admittances cannot be defined. Thus, for com-
plete generality, the transverse electric and magnetic fields
are expressed independently.

Refer again to Fig. 2. The aperture fields at z=0 will now
be expressed in terms of modes in b. If waveguide b is
matched, the transverse electric-field pattern of mode j is
given by b,é,;. However, each transmitted evanescent or
propagating mode j reaching junction 2 partially reflects and
scatters power into other modes k, some of which return to
junction 1. Therefore, it is necessary to account for these re-
turned waves, as well as for the positively directed ones,
when summing modes.

Scattering coefficients are used to relate the amplitudes
and phases of modes transmitted past junction 1 to those
reflected from junction 2. Consider waveguide b to be ex-
cited from junction 1 by a single forward wave j whose co-
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Fig. 2. Three waveguides with higher-order mode
coupling between junctions.

efficient is unity, i.e., b,=1 at junction 1. Then, scattering
coefficients s are defined as equal to mode coefficients by,
of the back-scattered waves k, transformed in amplitude and
phase to junction 1 from 2. This is repeated for all j. Clearly,
junction 2 must be solved before junction 1.

Multiplying b; by s;, gives the contribution of j to k as
seen at junction 1. Because each forward-propagating mode
j has an infinity of back-scattered modes k of the form
sb @y, associated with it, the total transverse electric and
magnetic fields just to the right of junction 1 result by sum-
ming over all j and k. This gives

&= bies; + D Sulw) %)
j=1 k=1
and
H = Z bj(}_’bj - Z Sjkﬁbk)' (6)
j=1 k=1

Boundary conditions to be satisfied at the discontinuity
are as follows: transverse electric and magnetic fields must
be continuous across the aperture, and electric field tangen-
tial to the conducting obstacle must vanish. The single
boundary condition is sufficient at a conducting surface.

Let m be any mode number in waveguide a. In all uniform
guides with reflection symmetry and perfectly conducting
walls, the following orthogonality relation [6] holds for
nondegenerate modes:

(7)

when i#m. The surface integral extends over the entire
cross section of the waveguide a. Degenerate modes should
be orthogonalized by the Gram—Schmidt procedure [7].

Take the cross product of (3) with &, and integrate over
the cross section of waveguide a. Assuming orthogonality
of modes and substituting (5) for the (as yet) unknown
aperture field &, thus employing the continuity condition for
transverse electric fields, we get

1+ p)alj €y X Rgy i ds = ) bj<J &y X hay
a =1 b

dyds + Y Sjkj 8o X Ry U, ds) (8)
k=1 b
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when m=1, and

().

8y; X hy il ds + )
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, by/a, and p), and so the system of equations may be
solved. For complicated problems (e.g., junctions between
rectangular and circular guides or between guides slab-
loaded differently, etc.), the integrations in (12) and (13)
should be performed numerically [8].

By rewriting (9), the coefficients of the back-scattered
modes in guide a may be found. Therefore,

N -
S]kj ébk X hai ° ﬁz dS\
b /

k=1

when m# 1. Because & exists over the aperture only and
vanishes elsewhere, the integrals on the right-hand sides of
(8) and (9) are taken over b. This completes the electric-
field boundary conditions.

Now, take the cross product of (4) with e,, and integrate
over the cross section of waveguide b. Substituting (6) for
the unknown aperture field #, and using the orthogonality
relation

f By X By i, ds = 0 (10)
b

for nondegenerate modes when n# j, we find that

(1 — p)a, J By X Byt ds — ) q J @y X Py, ds
b i=2  J»

= (b,, - bjsj,,)J @y X Ny, Ui, ds.
J=1 b

Continuity of transverse magnetic ﬁeld was used in the
derivation of (11).

Changing the index m to i in (9), substituting it into (11)
so as to eliminate a;, and rearranging, we get

(11)

N
p; X hgpt i ds + Y sij\ Gy X Ry 1
k=1 b

, (14)

where i+ 1. Terms previously formed by the Gram-Schmidt
orthogonalization procedure should now be decomposed
into normal waveguide modes, thus completing the study
of the junction.

By using (11) in place of (12), it is possible to solve for p,
b;/a;, and a;/a, all at the same time. This procedure has
two disadvantages: 1) the computer store requirement
approximately quadruples (assuming that M and N are
about the same size); and 2) as the amount of computing is
proportional to the cube of the number of unknowns, the
work increases by eight times. It is certainly preferable to
use (12) and then to find the a,/a, through (14).

IV. BOUNDARY ENLARGEMENT

This is the complement of the problem discussed in
Section III. Many of the comments made previously are
applicable here as well.

Call the first, and smaller, guide a and the larger one b.
Equations (3) through (6) describe the fields at the junction
as before.

The derivation of the simultaneous equations is almost
identical to that of Section III. Briefly, cross-multiply (6) by
€, and integrate over the cross section of a. Express the

B N M J L, ds
pj o X By il ds + Z a—’ Y J 8pn X Py il ds
b a5 J « Fopi,d b
/b ¥Nob -
P Y ’sj,,> pn X My 1, ds =J @y X hyy -1, ds (12)
1 =11 b b
and from (8),
-~ N b. / -~ N B _
pf €y X hyy i ds — ) aJ (J;ébjxhal-ﬁzds + ) sjkfébkxhal-ﬁzds> = —J €, X hyy 1, ds. (13)
a =144 k=1 b a

For practical reasons, the infinite series were truncated at
M and N which signify the number of modes in waveguides
a and b, respectively. Equation (12) generates N linear
equations where n=1, 2, - -+, N and (13) supplies one equa-
tion. There are N+1 unknowns (b,/a,, b,/ay, -, b,/ay,

aperture field by (4). Note that, as in (8) and (9), two cases
occur: m=1 and m# 1. Also, cross-multiply (5) by &,, and
integrate over the cross section of b, substituting (3) for &.
Assume orthogonality, and after some algebraic manipula-
tion, the following equations result:
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N
¥ g [ea,xhbj i, ds Zsjkf 4 X Py i, ds
- T _ J oa k=1 a _ - _
pfealxhbn'u:ds— - €, X My, i, ds
a j=1 ay i=»2 _ — _ a
€y X hytii, ds
a
b, S b; _ T _ I
=+ 3 s, Epp X Nyt ds = — | e, X hy, -1, ds, (15)
ay =141 ) b a
where n=1,2,---,N;
~ N b, ~ N ~ _
p| ey Xhyids+ Y - < Gy X hyjrityds — Y, sy | &gy X Byt ds ) = | &, X By il ds; (16)
a j=1 a; a k=1 a a
and
N b, B N B
-y —JO € X hyjritds — ) sp | 8y X by a-ds>
i Jj=1%"1 a k=1 a
= ) (17)

where i#1. The system of N+1 linear equations, defined
by (15) and (16), may be solved for b,/a, b,/a,, - - -, by/a;
and p. The back-scattered modes a,/a; can then be found
from (17).

V. SysTEMS OF CONNECTED WAVEGUIDES

Fig. 2 depicts part of a system in which interaction of
dominant and higher-order modes between discontinuities
occurs. As we have seen, if power flows from the left, it is
necessary to know the scattering properties of junction 2
before solving the problem at junction 1. Similarly, before
analyzing junction 2, the scattering properties of any dis-
continuity farther down the guide must be known. Ulti-
mately, analysis must begin at a simple termination, such as
a matched or single-mode guide or a short circuit which
causes independent reflection of each mode incident upon
it, regardless of the amplitude and phase of any other.

If the length / of a particular waveguide is small, many
modes generated at one junction, figure in the field sum-
mation at the other. In other words, higher-order mode
coupling occurs. Choose a finite number of modes in the
waveguide consisting of the lowest-order modes likely to be
set up at either junction.

As indicated earlier, the variable i=1 is not reserved for
any particular mode but is allowed to represent any mode
presumed incident on a junction. If  is the mode incident
on say junction 1, then p, is its reflection factor and qg,/a,,
with i#r, denotes the M —1 coefficients of other back-
scattered modes. These are all found as previously described.
Therefore, M scattering coefficients of junction 1, as defined
at the next junction towards the klystron, are given by

ﬂ et

i#r,
a

Sri =
' (18)
— 29,

= p,e i=r

thus including amplitude and phase change of both incident
and scattered modes between junctions. Consider each

mode r=1, 2, -+, M, in turn, to be independently incident
on the junction, and solve the resulting system of equations
each time. In this way, all M? scattering coefficients are
found.

Junctions can be represented by T, n, and transformer
networks [9], [10]. To evaluate the equivalent circuit, three
determinations of the input admittance y’ as a function of a
load in guide ¢ are generally required.

A. Diaphragms and Offset Waveguides
Refer to Fig. 2. Clearly, as the length of waveguide b de-

" creases, the coupling between modes generated at both

junctions becomes more pronounced and we have an iris
between two offset guides or, as a special case, simply two
offset guides. In the study of diaphragms, it is necessary to
match fields through the windows. However, it is incorrect
to equate both sets of waveguide modes across the plane of
the diaphragm, as this will not ensure zero transverse electric
field at the conducting surfaces. By treating the diaphragm
as a special case of a three-waveguide system, this problem
does not arise. Furthermore, this method does not require
any prior assumption as to the total field within the window.
It is only necessary to know the form of the normal modes
in the waveguide defined by the aperture shape.

B. Multiple-Guide Junctions

Fig. 3 typifies a class of multiple-guide junctions that this
method can accommodate. A particular problem is the
analysis of selective launching of modes into a large guide
b by controlling the amplitude and phase of modes in a and
a'. This problem is a significant one in the design of multi-
mode aerials [4].

Briefly, the method is as follows. Think of the system to the
left of the junction in Fig. 3 as one composite waveguide
rather than as a number of guides. The modes in this com-
posite system are defined in a special way. We define a set
to conform to the interior of one of the constituent guides,
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Fig. 3. A multiple-guide junction.

say a; elsewhere in the cross section these modes have zero
field. Similarly, another set is defined to suit the other guide
a', this time with no field over the first aperture and inter-
vening region. These modes are denoted i=1, 2, ---, M,
where M is the total number of modes assumed in both a
and «'. It is this double set that forms the normal and com-
plete mode system in the composite waveguide. Once modes
are defined in this way, it is of no consequence to the match-
ing procedure that they belong to electrically isolated guides.

Now, consider excitation only from a by mode #r. This
mode will partially reflect into a, and other back-scattered
modes will be generated, some traveling into a and others
into a’. Mode coefficients are found by solving the set of
simultaneous equations. The problem must then be re-
peated with excitation from @’ and the resulting fields found
by superposition.

The reverse situation, with a mode in the large guide-

impinging on the smaller guides, is handled similarly. The
bifurcation, discussed in Section VI, is one problem of this
type and the approach is described there.

C. Symmetry Considerations

Considerable simplification occurs when discontinuities
exhibit certain symmetries and are either symmetrically or
antisymmetrically excited. For example, the iris in Fig. 4 is
symmetrical about a transverse plane. If both ports are
excited symmetrically, an open circuit appears at the central
plane ; antisymmetrical excitation produces a short circuit.
Under these conditions, only pure reflection occurs at the
central plane, and so s; =0 when j#k. s;; is given simply by

53 = % (19)
32 j
¥}, is the normalized input admittance of the jth mode in b
at the discontinuity, distance [/2 from the symmetry plane.
Two parameters are sufficient to specify the equivalent
network of such discontinuities. For example, the upper-
arm impedances of the equivalent 7 network are both given
by Z;—Z,, and the common branch by Z,,. The com-
puted input impedance, with symmetrical excitation, yields
Z,,+Z,,, and that with antisymmetrical excitation gives
Zi1—Zy,.

VI. NumERICAL EXAMPLES

The bifurcation of a rectangular waveguide by a thin vane
is one of the few junction problems that have been solved
rigorously. As a check on the theory just developed, it will
be solved by the modal analysis method. Thick, semi-
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Fig. 4. A thick, symmetrical, inductive 1ris.

infinite and finite-length bifurcations will also be investi-
gated. These examples serve to indicate the gemeral ap-
proach and illustrate some practical difficulties.

A. H-Plane Bifurcation

Fig. 5 shows a rectangular waveguide loaded with a
thick, perfectly conducting vane. y-coordinate dimensions
are normalized with respect to the broad dimension w.
Assuming excitation by an H,, mode, only symmetrical
modes are generated at the discontinuity. Transverse field
patterns of the two lowest-order modes in the bifurcated
guide b are shown and are seen to be H,, and H,; modes
deformed by the vane. Modes in « are the usual ones in an
empty rectangular guide. Note that this is a boundary-
reduction problem.

Expressions for the transverse fields in guide a are

€, = U, sin (pmy/w). (20
and
Rai = B,y Sin (pry/w). (21)
The wave admittance of the ith mode is
& |/ Pho 2
Vai = —'\/ “\ 5w ) (22)
Ho w
Modes are numbered consecutively, i.e.,, i=1,2,- -, M, and
SO
p=2i-1, (23)

thus giving only symmetrical modes when substituted into
(20) and (21).
In the left-hand region of waveguide b the transverse

fields are
- _ . {2qmy/w
€y; = il sin <T——t/—w> (24
and
_ B . [ 2qmy/w
hy; = B,y sm<1 - t/w)’ (25)

Equations (24) and (25) hold in the range
0 < y/w <051 — t/w)

and are zero across the vane. Substitute (1 —y/w) for y/w
when 0.5(1 4 t/w) < y/w< 1. The admittance of the jth mode

18
&0 qho/W
= - (25)

(26)
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Transverse fields of the two lowest-order TE modes in a

centrally bifurcated rectangular guide.

Here, we have

q= (27)
where j=1,2,---, N. When calculating y,; and y,;, take the
positive root when real and the negative imaginary root
when imaginary.

If the vane were not central, one set of modes would have
to be defined to conform to the interior of one of the par-
titioned guides with zero field elsewhere. Similarly, another
set would have to be defined for the other section. This is
similar to the multiple-guide input discussed in Section V.
For the symmetrical problem, however, each mode has to
be defined over both apertures. Otherwise, two columns of
the matrix representing (12) and (13) will be identical, and
the system will then be singular.

Referring to (12) and (13), it is seen that the following
three integrals are required:

J €4 X hy iy ds = 0.5wy,, (28)
J &y; X hy; i, ds = 05wy, (1 — t/w), (29
b
and
J 8y; X hy; i1, ds = 0.5wy,(1 — t/w)
b
[sin (f)/f — sin(g)/g],  (30)
where
f=T0.5p(1 — t/w) — qln (31)
and
g = [0.5p(1 — 1/w) + q]r. (32)

The factor w is common to all terms in (12) and (13), and so
it may be deleted. As all fields are uniform along x, the
integrations above were performed only with respect to y.
Having evaluated these integrals, all the analysis required is
completed. This is a particularly simple problem, the s
terms vanishing due to the infinite length of the bifurcated
guide.

Cases t/w=0 and 0.2 were studied with the frequency
parameter w/i,=0.7. Integrals (28) to (30) were computed
and substituted into (12) and (13) as required. The same
number of modes were employed in each guide, i.e, M=N.
The resulting set of simultaneous linear equations was
solved by standard Gaussian reduction and back-substitu-
tion techniques [11].

Forward- and back-scattered mode coefficients were
computed and, from the reflection factor, the normalized
input admittance

_L1=p
y=1—
+p

(33)
was found. y' is tabulated in Table I as a function of different
expansion sizes for the thick and thin bifurcation. Results of
an exact analysis of the thin-vane case, which uses a trans-
form method, are plotted by Marcuvitz [12]. He gives the
resulting shift in the null point, and from it the normalized
admittance was calculated to be y'= — j2.416. On this basis
it is seen that the forty-mode expansion is less than 0.05
percent in error. Even with only ten modes the error is less
than 1 percent. Also, corresponding computations for a
vane with normalized thickness t/w=0.2 are given. An
exact solution is not known for this case, and so a com-
parison is not available. However, the rate of convergence
is seen to be equally rapid.

In Table II the first five forward-scattered mode co-
efficients, normalized with respect to that of the incident
mode i=1, are presented for t/w=0. It is clear that the
apportionment of power between scattered modes can be
closely calculated. For example, there is little difference in
the computed b;/a; values between the twenty- and forty-
mode cases. Coefficients b;/a, for lower-order modes are
known to a higher accuracy than the remaining terms. This
inaccuracy in the last few terms, due to an attempt to com-
pensate for the missing modes, may be seen in the N=5
case where j=35 is the last mode of the finite series.

As a reasonable approximation, take N =40 to furnish
almost exact results in comparison to N =10. On this basis,
b,/a,, by/a,, and bs/a, (for N=10) are known to within
errors of 0.5, 2, and 4 percent, respectively. It is difficult to
assess just how accurate the N =40 values are, but they are
probably of a very high order. Phase angles converge very
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rapidly. For this particular problem, all modes in a given
solution have the same phase at the discontinuity, except
for 180° phase reversals. Similar comments apply to the
back-scattered coeflicients a;/a,.

The junction fields are expressed by (3) through (6).
Substituting (20), (21), (24), and (25) into them, and dividing
by a,, we obtain the following equations. In waveguide a

E, = (1 + p)sin(my/w) + _ZZ —1 sin (pry/w) (34)

H, = (1 = p)y, sin (zy/w) + 1:22 a Y Sin (pry/w),  (35)
and in waveguide b within 0< y/w<0.5(1 —t/w)

I

H, = jé by, si ( 2qiryt//‘:vv ) a7

When 0.5(1 + t/w)<y/w<1, substitute (1 —y/w) for y/w in
(36) and (37). These fields are plotted (by computer) in
Figs. 6 to 9 for half the guide width only, the fields being
symmetrical about y/w=0.5. Solid curves represent the
field summation in guide a immediately preceding the
junction, and the broken curves represent the fields just in-
side guide b.

First of all, consider the electric fields. The quality of the
match is seen to improve as more modes are used. Notice
that the electric field in b is zero at the vane. This is because
each constituent mode of the Fourier series has zero electric
field there. However, the summation of modes in guide a
does not vanish there, although it is attempting to do so.
In particular, over the thick vane, E, in guide a oscillates
about zero. The greater the number of modes used, the
greater the frequency of oscillation, and the smaller their
amplitudes, converging to zero in the limit.

The aperture electric fields are roughly what one might
have expected. The resulting pattern is a compromise be-
tween the incident H,; mode and the requirement that the
electric field should disappear at the vane; the maximum
electric field does not occur at the center of the bifurcated
region but slightly more to the center of the guide. As the
wave proceeds down the guide, the higher-order modes
attenuate very rapidly, and the pattern becomes substan-
tially that of an undistorted half-sine wave in each region.

The magnetic field has to cope with a singularity at the
edge of the vane. For this reason, H, does not attain as good
a match as does E,, for the same number of modes. Besides
going to infinity as the corner is approached, an added
difficulty is that H, in guide b must vanish at the vane for
the same reasons as E,. This is attempted by rising to a
high value near the vane, and then suddenly dropping
sharply to zero.

In the limit, with increasingly large expansions, the oscil-
lations disappear and H, increases almost linearly with y/w,
except in the vicinity of the edge where it goes to infinity.
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Directly in front of the vane, a magnetic field exists sup-
ported by surface currents.

In the preceding study, the number of modes employed
in guides a and b were equal, i.e.,, M = N. For several vane
thicknesses (t/w=0, 0.2, and 0.8), computations were made
of input admittance y’ versus N for a range of M/N values.
It was found that if M/N was greater than unity, higher
accuracy could be achieved. However, if M/N was too large,
instabilities occurred and wrong answers resulted. It is felt
that there may be a way of choosing an optimum ratio for
a given discontinuity, but the matter has not yet been in-
vestigated. In a general way, it seems that the greater the
discontinuity, the larger the optimum M/N ratio required.

B. Finite-Length Bifurcation

Having considered the semi-infinite bifurcation, the finite
bifurcation of length [ will now be studied. This is a sym-
metric problem, and so it will be treated as described in
Section V.

The propagation constant of the jth mode in guide b is

given by
[ 29 \? w Y
”J“w(l_M ‘(ZTO)-

The normalized input admittance of the jth mode, distance
I/2 from an open circuit at the central plane, is

(38)

yp; = tanh (y,1/2) (39)
and with a short circuit at the central plane,
Vp; = coth (y;l/2). (40)

s;; 1s then computed from (19). It could equally have been
found by rewriting (18) to give

= te W, 41)
where the plus and minus signs correspond to symmetrical
and antisymmetrical excitation, respectively.

Assuming an open circuit at the central plane, p was com-
puted from (12) and (13) (using the relevant values of s;)),
and from it the normalized input impedance Z,; +Z,, was
found. With a short circuit at the central plane, the input
impedance Z,; —Z,, was found. Z,, was then easily cal-
culated.

Table III presents the resulting equivalent T network
values for different normalized lengths I/w. For long vanes,
w=10, Z,,—Z,, is the inverse of y' computed for the
semi-infinite case. As the length decreases, Z,; —Z,, be-
comes smaller and Z,, increases. At about I/w=0.1, they
are approximately equal. With further reduction in length,
the bifurcation appears to be a zero-thickness inductive
strip. Certain numerical difficulties arise when I/w is made
exactly equal to zero. This is heralded by increasing dis-
agreement between the Z, , values, computed for the N =25
and N = 50 cases, as the length decreases. Finally, the results .
make no sense at all. Possibly, the simultaneous equations
tend to become ill-conditioned in the limit. This point
should be investigated more carefully.



TABLE 1

SEMI-INFINITE BIFURCATIONS w/4=0.7. NORMALIZED

INPUT ADMITTANCE ¥’

N thw=0 tw=02

5 —j2.363 —j7.213

10 —j2.396 —j7.335

20 —j2.410 _j7.378

40 —j2.415 —j7.394
TABLE II

SEMI-INFINITE BIFURCATION #/w =0, w/dq=0.7. FIRST FIVE FORWARD-SCATTERED MODE COEFFICIENTS bja,

N=5 N=10 N=20 N=40
1 0.7956/67 06° 0.7857/67.35" 0.7824/67.46° 0.7813/67.50°
2 —0.1802/67.06° —0.1717/67.35° —0.1693/67.46° —0.1685/67.50°
3 0.0975/67.06° 0.0872/67.35° 0.0847/67.46° 0.0840/67.50°
4 —0.0715/67.06° —0.0562/67.35" —0.0535/67.46" —0.0528/67.50°
S 0.0789/67.06° 0.0409/67.35° 0.0379/67.46° 0.0372/67.50°
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Fig. 6. H-plane bifurcation transverse fields: t/w=0, N=20. (a) Phase of E,=67 46" (b) Phase of H,= —22.54".
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Fig. 7. H-plane bifurcation transverse fields: t/w=0, N =40. (a) Phase of E, =67.50°. (b) Phase of H = —22.50".



516 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, SEPTEMBER 1967

H
E y
0.5 h 1.0x1072
04+ 0.8
031 06 +—
(a) (b)
o2 \ 04}
ol 02+ \
1 1 Il \ | ! It 1 \ ]
00 0} 02 03 oav 05 [o]. ol 02 03 04 05
y/w y/w

Fig. 8. H-plane bifurcation transvérse fields: t/w=0.2, N=20. (a) Phase of E,=82.28°, (b) Phase of H,= —7.72°.
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Fig. 9. H-plane bifurcation transverse fields: t/w=0.2, N=40. (a) Phase of E, =82.30. (b) H,= —7.70".

TABLE III

FINITE-LENGTH BIFURCATION #/w=0.2, w/l,=0.7. SYMMETRICAL T
EQUIVALENT NETWORK PARAMETERS

Ifw N=25 N=50
ZIZ le'—ZlZ ZlZ ZII_ZIZ

10 7.0000 71354 7.0000 7.1352
1 7.0002 7.1352 7.0002 7.1350
1071 7.0769 7.0651 7.0767 7.0650
1072 7.1589 7.0089 7.1578 7.0089
103 7.1801 7.0009 7.1766 7.0009
1074 7.1907 7.0001 7.1824 7.0001
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VII. CONCLUSIONS

A method was derived for solving a wide class of wave-
guide discontinuities by modal analysis. Thick and thin
symmetrical H-plane bifurcations were studied. Input ad-
mittance and scattered modes were computed for a number
of expansion sizes. Accuracy improved with the number of
modes used.

Transverse electric-field patterns, plotted on both sides
of the junction, indicated a good match for twenty and
forty modes. Magnetic field matches less well due to the
singularity at the vane. Even so, with forty modes the actual
pattern may be easily discerned. Because permeable media
do not exhibit singularities, it is believed that convergence
will be much more rapid for discontinuities formed by them.

More information is required on the effects of different
numbers of modes on alternate sides of a junction and on
the solution’s behavior as the axial length of a discontinuity
vanishes.
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A One-GHz Ferroelectric Limiter

JOHN B. HORTON, MEMBER, IEEE, AND MERLE R. DONALDSON, SENIOR MEMBER, IEEE

Abstract—The design and analysis of a 1-GHz limiter which uses voltage
variation of the dielectric constant of a ferroelectric material to achieve
limiting is described. An RF electric field derived from the input power is
used to change the relative dielectric constant ¢, of the material; the resulting
nonlinear change of capacitance of a small element of the material is used to
change the condition of a tuned circuit. The tuned circuit terminates a quarter-
wavelength stub which shunts the main transmission line, thereby providing a
power-dependent mismatch at the junction of the two transmission lines. The
degree of this mismatch is controlled by the condition of the tuned circuit and,
therefore, the magnitude of the input power.
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Theoretical analysis and experimental results for small signal and large
signal operation are presented. Limiter analysis is based on the measured
change of ferroelectric (nonlinear) capacitance as a function of dc electric
field. The ferroelectric element is 0.011 by 0.013 by 0.020 (inches) machined
from polycrystalline (Pb, 5, 5—Sr; ¢55) TiO; material.

ERROELECTRIC materials have inherent properties
thich cause the dielectric constant of the material to

change as a function of ambient temperature and
electric field. The change of dielectric constant with electric
field is particularly interesting to circuit designers, since it
represents a mechanism by which circuit response can be
changed electrically. Applications to be considered at
microwave frequencies are switches, harmonic generators,
limiters, parametric amplifiers, phase shifters, etc. To date,
a UHF limiter [1], an X-band harmonic generator [2],
a UHF phase shifter [3], and an L-band switch {4], [5]
have been reported, and parametric amplifiers have been
investigated quite thoroughly [6]. The L-band passive
limiter described here is a result of further effort to apply



